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The form of physical property tensors of a quasi-one-dimensional material such

as a nanotube or a polymer can be determined from the point group of its

symmetry group, one of an infinite number of line groups. Such forms are

calculated using a method based on the use of trigonometric summations. With

this method, it is shown that materials invariant under infinite subsets of line

groups have physical property tensors of the same form. For line group types of

a family of line groups characterized by an index n and a physical property

tensor of rank m, the form of the tensor for all line group types indexed with n >

m is the same, leaving only a finite number of tensor forms to be determined.

1. Introduction

Non-magnetic and magnetic line groups (Hermann, 1928;

Alexander, 1929; Damnjanović & Vujičić, 1982) describe the

symmetry of quasi-one-dimensional materials, as polymers

(Vainshtein, 1966) and nanotubes (Damnjanović & Milošević,

2010). The form of tensors representing physical properties of

such materials is invariant under the point groups, referred to

here as line point groups (also known as axial point groups), of

these line groups. The 31 families of line point group types

(Damnjanović & Vujičić, 1981), which categorize the infinite

number of line groups, are listed in Table 1. These line point

groups are subdivided into three subclasses: (i) groups G

which do not contain the time inversion operation 10, neither

by itself nor coupled with another element; (ii) groups G1000

which are direct products of a group G of the first subclass and

the group 1000 = {1,10}; and (iii) groups G(H) = H + (G � H)10

where H is a subgroup of index two of a group G of the first

subclass, of elements not coupled with time inversion, and the

remaining elements of G, i.e. the elements G � H, are coupled

with the time inversion.

Let V represent a three-dimensional polar vector and Vm =

V � V � . . . � V the mth ranked product of V (Jahn, 1949).

An mth rank physical property tensor Vm in three-dimensional

space has 3m components. Each component of V can be

indexed, when using a Cartesian coordinate system, by the

symbols x, y and z of the coordinate system. Each component

of Vm can then be indexed by an ordered product of m x, y and

z’s. We shall refer to these products as m-products. Let e and a

denote zero-rank tensors that change sign under spatial

inversion 1 and time inversion 10, respectively. Combining

these tensors with tensors Vm we have the four types of tensors

of mth ranked physical property tensors Vm, eVm, aVm and

aeVm considered in this paper.

In x2, new methods are set out to determine the form of

property tensors invariant under individual finite and infinite

(limiting) line point groups. In x3, using these methods and a

corollary of Hermann’s theorem (Hermann, 1934), we derive a

general bypass theorem which enables one to bypass having to

determine the form of individual property tensors under all

line point groups by showing that the form of the tensors is the

same under infinite subsets of line point groups. This theorem

is applied in x4 along with the methods of x2 to tabulate the

form of all rank-two magnetic and non-magnetic physical

property tensors, including those with internal symmetry,

invariant under all line point groups.

2. Physical property tensors invariant under line point
groups

Given an mth rank physical property tensor and a group G

whose elements are denoted by Gq, q = 1, 2, . . . , |G|, where |G|

denotes the order of the group G, one determines conditions

on the form of the tensor invariant under G by applying each

element Gq of G to each of the 3m components of the tensor.

Applying an element Gq to a component of the tensor gives

rise to a linear combination of components. Equating the

original component with this combination gives a condition

which the components must satisfy if the tensor is to be

invariant under G. That is, for each of the 3m components of

the mth ranked tensor and |G| elements Gq of G, we have

3m|G| conditions on the components that the tensor must

satisfy to be invariant under G. These conditions are

components ¼ Gq ðcomponentsÞ ð1Þ

for s = 1, 2, . . . , 3m and q = 1, 2, . . . , |G|.

From Table 1 we see that each line point group is a group Cn

or contains a subgroup Cn of index two, four or eight.

1 This article forms part of a special issue dedicated to mathematical
crystallography, which will be published as a virtual special issue of the
journal in 2014.
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Consequently, the form of every physical property tensor

invariant under any line point group is invariant under a group

Cn. Therefore, we shall begin by determining a method to find

the form of tensors Vm invariant under line point groups Cn.

Subsequently, we shall use this method as a basis to determine

the form of all tensors of rank m invariant under all line point

groups.

In determining the form of tensors Vm invariant under line

point groups Cn, since the transformational properties of the

components of Vm under elements of Cn are the same as the

transformational properties m-products of x, y and z under

elements of Cn, equation (1) can be rewritten as

m-products ¼ ðCnÞq ðm-productsÞ; ð2Þ

s = 1, 2, . . . , 3m and q = 1, 2, . . . , |Cn|.

Groups Cn, n = 1, 2, 3, . . . 1, constitute an infinite series of

point groups associated with line groups. We shall consider

only cases n > 1 since for n = 1, C1 = {1} where ‘1’ is the identity

element, and the invariance of Vm under C1 gives the general

form of the physical property tensor. Each group Cn, n = 1, 2,

3, . . . 1, is generated by a single element Cn, a rotation of

2�=n about what we choose as the z axis, and the elements of

Cn, for a specific n, can be denoted by (Cn)j, j = 1, 2, . . . , n,

where n is the order |Cn| of the group Cn. As this cyclic group is

generated by the single element Cn, a tensor whose compo-

nents satisfy the 3m conditions of equation (2) for the element

Cn, i.e.

m-products ¼ Cn ðm-productsÞ ð3Þ

for s = 1, 2, . . . , 3m, automatically satisfies (see Appendix A in

the supporting information2) the 3m (n � 1) conditions

m-products ¼ ðCnÞ
j
ðm-productsÞ ð4Þ

for s = 1, 2, . . . , 3m and j = 2, 3, . . . , n.

Combining for each m-products the sum of equation (3) and

equation (4) for j = 2, 3, . . . , n, assuming that n is finite, we

have that a physical property tensor Vm invariant under Cn

satisfies the 3m conditions

nðm-productsÞ ¼
Pn
j¼1

ðCnÞ
j
ðm-productsÞ ð5Þ

for s = 1, 2, . . . , 3m. In Appendix A, it is also shown that the m-

products which satisfy equation (5) also satisfy equations (3)

and (4). Consequently, in determining the form of a tensor Vm

invariant under a group Cn one can replace the n3m conditions

of equations (3) and (4) with the 3m conditions of equation (5).

We shall use equation (5) to generate conditions on the

form of physical property tensors Vm invariant under the

group Cn. The right-hand side of equation (5) is evaluated by

considering the action of the element (Cn)j on each index of

the m-product. This action is that

each x is replaced with x cos
2�

n

� �
j� y sin

2�

n

� �
j; ð6aÞ

each y is replaced with x sin
2�

n

� �
jþ y cos

2�

n

� �
j; ð6bÞ

and each z is left unchanged. The summation over ‘j’ is then

performed to obtain the conditions on the components of the

physical property tensor Vm to be invariant under the group

Cn. One obtains a set of terms each of which is a product of an

m-product and a trigonometric summation. The trigonometric

summations are evaluated (Gradshteyn & Ryshik, 2007) to

obtain conditions which are solved to determine the form of

physical property tensors Vm invariant under the group Cn.

An example of this procedure is given in Appendix B (see

supporting information).

We now discuss additional conditions on the components of

the physical property tensor Vm to be invariant under line
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Table 1
Families of line point group types.

Cn denotes the family of line group types with n = 1, 2, 3, . . . of groups
generated by a rotation of 2�/n about an axis which we take as the major axis.
�v is a vertical mirror plane, a plane containing the z axis, �h a horizontal
mirror plane, perpendicular to the major axis, U a twofold rotation
perpendicular to the major axis, and Ud a twofold rotation perpendicular to
the major axis and halfway between neighboring vertical mirror planes. To the
right of the group symbol is the coset decomposition of the line point group
with respect to its subgroup Cn.

Groups G
Cn

Cnv = Cn + �v Cn

S2n = Cn + (�hC2n) Cn

Cnh = Cn + �h Cn

Dn = Cn + U Cn

Dnd = Cnv+ Ud Cnv = Cn + �v Cn + UdCn + Ud�v Cn

Dnh = Cnv + �h Cnv = Cn + �v Cn + �h Cn + �h �v Cn

Groups G1000

Cn10 = Cn + 10 Cn

Cnv10 = Cnv + 10 Cnv = Cn + �v Cn + 10(Cn + �v Cn)
S2n10 = S2n + 10 S2n = Cn + (�hC2n) Cn + 10(Cn + (�hC2n) Cn)
Cnh10 = Cnh + 10 Cnh = Cn + �h Cn + 10(Cn + �v Cn)
Dn10 = Dn + 10 Dn = Cn + U Cn + 10(Cn + U Cn)
Dnd10 = Dnd + 10 Dnd = Cn + �v Cn + UdCn + Ud�v Cn + 10(Cn + �v Cn

+ UdCn + Ud�v Cn)
Dnh10 = Dnh + 10 Dnh = Cn + �v Cn + �h Cn + �h �v Cn + 10(Cn + �v Cn

+ �h Cn + �h �v Cn)

Groups G(H)
C2n(Cn) = Cn + C2n

0 Cn

S2n(Cn) = Cn + (�hC2n)0 Cn

Cnh(Cn) = Cn + �h
0 Cn

C2nh(S2n) = S2n + �h
0 S2n = Cn + (�hC2n) Cn + �h

0(Cn + (�hC2n) Cn)
C2nh(Cnh) = Cnh + C2n

0 Cnh = Cn + �h Cn + C2n
0(Cn + �h Cn)

Dn(Cn) = Cn + U0 Cn

D2n(Dn) = Dn = C2n
0 Dn = Cn + U Cn + C2n

0(Cn + U Cn)
Cnv(Cn) = Cn + �v

0 Cn

C2nv(Cnv) = Cnv + C2n
0 Cnv = Cn + �v Cn + C2n

0(Cn + �v Cn)
Dnd(S2n) = S2n + Ud

0 S2n = Cn + (�hC2n) Cn + Ud
0(Cn + (�hC2n) Cn)

Dnd(Dn) = Dn + �v
0 Dn = Cn + UdCn + �v

0(Cn + UdCn)
Dnd(Cnv) = Cnv + Ud

0 Cnv = Cn + �v Cn + Ud
0(Cn + �v Cn)

Dnh(Cnh) = Cnh + �v
0 Cnh = Cn + �h Cn + �v

0(Cn + �h Cn)
Dnh(Dn) = Dn + �h

0 Dn = Cn + U Cn + �h
0(Cn + U Cn)

Dnh(Cnv) = Cnv + �h
0 Cnv = Cn + �v Cn + �h

0(Cn + �v Cn)
D2nh(Dnd) = Dnd + C2n

0 Dnd = Cn + �v Cn + UdCn + Ud�v Cn

+ C2n
0(Cn + �v Cn + Ud Cn + Ud�v Cn)

D2nh(Dnh) = Dnh + C2n
0 Dnh = Cn + �v Cn + �h Cn + �h �v Cn

+ C2n
0(Cn + �v Cn + �h Cn + �h �v Cn)

2 Supporting information is available from the IUCr electronic archives
(Reference: XO5022).



point groups. Each line point group, see Table 1, can be written

as a coset decomposition with respect to the group Cn:

line point group ¼ r1Cn þ r2Cn þ r3Cn þ . . .þ rpCn; ð7Þ

where r1 = 1 and ri, i = 1, 2, . . . , p, are the coset representatives

of the coset decomposition. All conditions due to the invar-

iance requirements under Cn on the components of the tensor

Vm are provided by equation (5) and the additional conditions

provided by equation (1) using the coset representatives ri,

i = 2, . . . , p, of the coset decomposition [equation (7)]. For

example, all conditions on the components of the tensor Vm

invariant under a line point group of the family Dn for a

specific value of n are given by the conditions due to the group

Cn and an additional condition, equation (1), due to the coset

representatives U, a twofold rotation perpendicular to the

rotation axis of Cn. This same procedure is used to determine

the form of all mth ranked tensors Vm, eVm, aVm and aeVm

invariant under line point groups for finite n.

When n is infinite, we have the so-called limiting line point

groups (Tavger, 1960; Bhagavantam & Pantulu, 1966; Krish-

namurty & Gopalakrishnamurty, 1969). Notation for these

limiting line point groups is given in Table 2. To determine the

form of a physical property tensor invariant under a limiting

line point group one can first determine the form under the

limiting group C�, a group generated by an infinitesimal

rotation C� . Determining the form of a physical property

tensor Vm invariant under the limiting group C� is analogous

to determining the form of the tensor invariant under Cn. The

operator C�, representing a rotation which we take about the z

axis, is applied to each component of the tensor. Each

component of the tensor must be invariant under C�, giving a

condition on each component analogous to equation (2):

m-products ¼ C� ðm-productsÞ ð8Þ

for s = 1, 2, . . . , 3m. The action of C� on each component is

to replace each x with x cos � � y sin �, each y with x sin � +

y cos �, and each z is left as is. Both sides are multiplied by d�
and then integrated over all angles � from 0 to 2� to obtain

conditions on the components of the tensor:

2�ðm-productsÞ ¼
R�¼2�

�¼0

C� ðm-productsÞ d� ð9Þ

for s = 1, 2, . . . , 3m. Additional conditions on the form of a

physical property tensor Vm invariant under the limiting line

point group are provided by equation (1) using the coset

representatives, see Table 2, of the limiting line point group in

the coset decomposition with respect to C� . The same proce-

dure is used to determine the form of all mth ranked tensors

Vm, eVm, aVm and aeVm invariant under limiting line point

groups. An example of this procedure is given in Appendix C

(see supporting information).

3. Bypass theorem

The following theorem

The form of a physical property tensor Vm invariant under a

group Cn, with n>m, is independent of n.

is a corollary of Hermann’s theorem (Hermann, 1934) which

states if an m-rank tensor has an n-fold symmetry axis and n >

m, the tensor also has a symmetry axis of an infinite order. The

proof which we shall give here is related to the methodology of

the previous section, of determining the form of tensors

invariant under individual finite and infinite (limiting) line

point groups, and is by showing that when n > m all conditions

on the components of the tensor Vm, which determine the

form of the tensor, are independent of n. To be invariant under
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Table 2
Limiting line point group types.

The first two columns are point group type symbols in ‘Hermann–Mauguin (International)’ long and short notation. The third column is in Shubnikov notation
(Shubnikov, 1958, 1964), ‘Hermann–Mauguin/Schoenflies’ notation is in the fourth column, and a ‘Schoenflies’ notation is in the fifth column. The fifth column also
gives the coset decomposition of the limiting line point group with respect to its subgroup C1.

Groups G
1 1 1 C1 C1 = C1
1/m 1/m 1:m C1/m C1h = C1 + �h C1
1mm 1m 1�m C1m C1v = C1 + �v C1
12 12 1:2 C12 D1 = C1 + U C1
1/mmm 1/mm m�1:m C1/mm D1h = C1v + �h C1v = C1 + �vC1 + �h C1 + U C1

Groups G1000

110 110 1 C11000 C11000 = C1 + 10C1
1/m10 1/m10 1:m C1/m1000 C1h1000 = C1h + C1h10 = C1 + �h C1 + 10(C1 + �h C1)
1mm10 1m10 1�m C1m1000 C1v1000 = C1v + C1v10 = C1 + �v C1 + 10(C1 + �v C1)
1210 1210 1:2 C121000 D11000 = D1 + D110 = C1 + U C1 + 10(C1 + U C1)
1/mmm10 1/mm10 m�1:m C1/mm1000 D1h1000 = D1h + D1h10 = C1 + �v C1 + �h C1 + U C1 +10(C1 + �v C1 + �hC1 + U C1)

Groups G(H)
1/m0 1/m0 1:m C1/m(C1) C1h(C1) = C1 + �h

0 C1
1m0m0 1m0 1�m C1m(C1) C1v(C1) = C1 + �v

0 C1
120 120 1:2 C12(C1) D1(C1) = C1 + U0C1
1/mm0m0 1/mm0 m�1:m C1/mm(C1/m) D1h(C1h) = C1h + �v

0 C1h = C1 + �h C1 + �v
0(C1 + �h C1)

1/m0mm 1/m0m m�1:m C1/mm(C1m) D1h(C1v) = C1v + �h
0 C1v = C1 + �v C1 + �h

0(C1 + �v C1)
1/m0m0m0 1/m0m0 m�1:m C1/mm(C12) D1h(D1) = D1 + �h

0 D1 = C1 + U C1 + �h
0(C1 + U C1)



Cn, the components of the tensor Vm must satisfy equation (5).

The action of an operator (Cn) j is given by equations (6a),

(6b). Consequently, the right-hand side of equation (5)

becomes a set of linear terms each of which is a product of an

m-product and a summation of the form

Xn

j¼1

cosa 2�

n
j sinb 2�

n
j;

where aþ b ¼ s � m. We shall show that for n > m each of

these summations is either zero or proportional to n and

consequently the right-hand side of each equation (5) is either

zero or proportional to n. In the former case, the m-product on

the left-hand side of the equation is zero and in the latter, the

n’s cancel out. In both cases the condition on the component

of the tensor is independent of n. QED

We shall prove then that with s � m, 0 � b � s and n > m

Xn

j¼1

coss�b 2�

n
j sinb 2�

n
j ¼ 0

or

Xn

j¼1

coss�b 2�

n
j sinb 2�

n
j / n;

i.e. is equal to zero or proportional to n. The proof, given in

Appendix D (see supporting information), is divided into

eight parts depending on the value and parity of the exponents

of the trigonometric functions. A summary of the results is

given in Table 3.

The above theorem can be generalized to include all line

point groups:

The form of a physical property tensor Vm invariant under a

line point group which contains the subgroup Cn, with n > m, is

independent of n.

The proof is based on the fact that Cn is a subgroup in all

line point groups, see Table 1, and the coset representatives of

the coset decomposition of each line group with respect to the

group Cn give rise to additional conditions on the form of the

physical property tensor which, for n > m, are also indepen-

dent of n. For the remaining six classes of line groups of type I:

(i) For groups Cnv = Cn + �v Cn. The form of Vm invariant

under Cn is the same for all n > m. Taking �v = my for all n,

which gives an additional condition independent of n, the form

of Vm invariant under Cnv is then the same for all n > m.

(ii) For groups S2n = Cn + (�hC2n) Cn. The form of Vm

invariant under Cn is the same for all n > m. It is then also

invariant under C2n, since 2n > n > m, and therefore in

particular under the element C2n. The element �h gives rise to

a condition that causes all components with one or three z’s to

be zero, a condition independent of n. The form of Vm

invariant under S2n is then the same for all n > m.

(iii) For groups Cnh = Cn + �h Cn. The form of Vm invariant

under Cn is the same for all n > m. The element �h gives rise to

a condition independent of n. The form of Vm invariant under

Cnh is then the same for all n > m.

(iv) For groups Dn = Cn + U Cn. The form of Vm invariant

under Cn is the same for all n > m. Taking U = 2x for all n, the

form of Vm invariant under Dn is then the same for all n > m.

(v) For groups Dnd = Cnv + Ud Cnv. The form of Vm invariant

under Cnv is the same for all n > m. We take �v = my for all n

and rotate the coordinate system through an angle of �=2n.

The form of Vm is also invariant under the operation C4n, since

4n > n > m, and we now take a rotation Ud = Uy along the new

y axis for all n > m. The form of Vm invariant under Dnd is then

the same for all n > m.

(vi) For groups Dnh = Cnv + �h Cnv. The form of Vm invariant

under Cnv is the same for all n > m. The element �h gives rise

to a condition independent of n. The form of Vm invariant

under Dnh is then the same for all n > m.

For the remaining line point groups of types II and III,

see Table 1, proofs are analogous to those given for the above

line point groups since the action of the time inversion

operation 10 on components of a tensor Vm is independent of

n. As actions of all elements of line point groups on both

tensors e and a are independent of the value of n, the

preceding theorem and corollary are also valid for physical

property tensors eVm, aVm and aeVm. This then gives the

general form of the above theorem which we shall refer to as

the Bypass theorem:

The form of physical property tensors Vm, eVm, aVm and aeVm

invariant under a line point group which contains the
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Table 3
Value of trigonometric summations

Pn
j¼1 coss�bð2�=nÞj sinb

ð2�=nÞj in
conditions on components of tensors Vm invariant under groups Cn, n >
m, with s � m and 0 � b � s.

s even:

Xn

j¼1

coss 2�

n
j / n

Xn

j¼1

sins 2�

n
j / n

s odd:

Xn

j¼1

coss 2�

n
j ¼ 0

Xn

j¼1

sins 2�

n
j ¼ 0

b 6¼ 0 or s and even, s� b even and s even:

Xn

j¼1

coss�b 2�

n
j sinb 2�

n
j ¼ 0 or / n

b 6¼ 0 or s and odd, s� b even and s odd:

Xn

j¼1

coss�b 2�

n
j sinb 2�

n
j ¼ 0

b 6¼ 0 or s and odd, s� b odd and s even:

Xn

j¼1

coss�b 2�

n
j sinb 2�

n
j ¼ 0

b 6¼ 0 or s and even, s� b odd and s odd:

Xn

j¼1

coss�b 2�

n
j sinb 2�

n
j ¼ 0



subgroup Cn, with n > m, is invariant under the limiting group

of that line point group.

The limiting group family of each line point group family as

n!1 is given in Table 4.

As a consequence of this Bypass theorem, if one is to

determine the form of an mth rank tensor invariant under all

line point groups, one needs only to determine the form of the

tensor for those line point groups with n = 1, 2, . . . , m and n =

1. The form of the tensor for all n > m is the same as for

n =1.

4. Physical property tensors of rank two invariant under
line point groups

We consider all physical property tensors of rank two and

internal symmetries as considered by Sirotin & Shaskolskaya

(1982); in terms of Jahn symbols these are the 12 tensors

V2 eV2 aV2 aeV2

½V2� e½V2� a½V2� ae½V2�

fV2g efV2g afV2g aefV2g;
ð10Þ

where [V2] denotes that the tensor is symmetrized, i.e. Vij = Vji,

and {V2} that the tensor is anti-symmetrized, i.e. Vij = �Vji.

Among these physical property tensors are, e.g., tensors of:

dielectric, magnetic and toroidic susceptibility [V2]; electro-

toroidic coefficients aV2; magnetotoroidic coefficients and

gyration eV2; and magnetoelectric coefficients aeV2.

The infinite number of line point groups of each family of

line point groups are indexed by an index n = 1, 2, . . . , 1.

Using the Bypass theorem, for each of these rank-two tensors,

to tabulate the form of the tensor invariant under the infinity

of line point groups of each line point group family, one needs

only to list the form of the tensor for representative line

groups of three line group types, for representative line point

groups indexed by n = 1, 2 and 1. The form of each tensor

invariant under a line point group indexed by a value of n > 2

is the same as the form of the tensor invariant under the line

point group of that family indexed by n = 1. The form of

these tensors for a representative line point group of each of

the three types in each line group family is given in Table 5

(see supporting information). Subsets of this table can be

found in the works of Milošević (1995), Dmitriev (2003) and

Sirotin & Shaskolskaya (1982).
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Table 4
Finite line group families to limiting line point group type as n!1.

Groups G
Cn ! C1
Cnv ! C1v

Cnh, S2n ! C1h

Dn ! D1
Dnh, Dnd ! D1h

Groups G1000

Cn10 ! C110

Cnv10 ! C1v10

Cnh10, S2n10 ! C1h10

Dn10 ! D110

Dnh10, Dnd10 ! D1h10

Groups G(H)
C2n(Cn) ! C110

S2n(Cn), Cnh(Cn) ! C1h(C1)
C2nh(S2n), C2nh(Cnh) ! C1h10

Dn(Cn) ! D1(C1)
D2n(Dn) ! D110

Cnv(Cn) ! C1v(C1)
C2nv(Cnv) ! C1v10

Dnd(Dn), Dnh(Dn) ! D1h(D1)
Dnd(Cnv), Dnh(Cnv) ! D1h(C1v)
Dnd(Cnh), Dnd(S2n) ! D1h(C1h)
D2nh(Dnd), D2nh(Dnh) ! D1h10
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